Lightning is one of the most beautiful displays in nature. It is also one of the most deadly natural phenomena known to man. With bolt temperatures hotter than the surface of the sun and shockwaves beaming out in all directions, lightning is a lesson in physical science and humility.
Beyond its powerful beauty, lightning presents science with one of its greatest local mysteries: How does it work? It is common knowledge that lightning is generated in electrically charged storm systems, but the method of cloud charging still remains elusive. In this article, we will look at lightning from the inside out so that you can understand this phenomenon.
Lightning begins with a process that's less mysterious: the water cycle. To fully understand how the water cycle works, we must first understand the principles of evaporation and condensation.
Photo courtesy of NASA
More than 1,000 people are
struck by lightning annually
in the United States. .
Evaporation is the process by which a liquid absorbs heat and changes to a vapor. A good example is a puddle of water after a rainfall. Why does the puddle dry up? The water in the puddle absorbs heat from the sun and the environment and escapes as a vapor. "Escape" is a good term to use when discussing evaporation. When the liquid is subjected to heat, its molecules move around faster. Some of the molecules may move quickly enough to break away from the surface of the liquid and carry heat away in the form of a vapor or gas. Once free from the constraints of the liquid, the vapor begins to rise into the atmosphere.
Condensation is the process by which a vapor or gas loses heat and turns into a liquid. Whenever heat is transferred, it moves from a higher temperature to a lower temperature. A refrigerator uses this concept to cool your food and drinks. It provides a low-temperature environment that absorbs the heat from your beverages and foodstuffs and carries that heat away in what is known as the refrigeration cycle. In this respect, the atmosphere acts like a huge refrigerator to gas and vapors. As the vapors or gases rise, the temperatures in the surrounding air drop lower and lower. Soon, the vapor, which has carried heat away from its "mother" liquid, begins to lose heat to the atmosphere. As it rises to higher altitudes and lower temperatures, eventually enough heat is lost to cause the vapor to condense and return to a liquid state.
Let's now apply these two concepts to the water cycle.
Water or moisture on the earth absorbs heat from the sun and the surroundings. When enough heat has been absorbed, some of the liquid's molecules may have enough energy to escape from the liquid and begin to rise into the atmosphere as a vapor. As the vapor rises higher and higher, the temperature of the surrounding air becomes lower and lower. Eventually, the vapor loses enough heat to the surrounding air to allow it to turn back into a liquid. Earth's gravitational pull then causes the liquid to "fall" back down to the earth, thereby completing the cycle. It should be noted that if the temperatures in the surrounding air are low enough, the vapor can condense and then freeze into snow or sleet. Once again, gravity will claim the frozen forms and they will return to the earth.
In the next section, we'll see what causes electrical storms.
Electrical Storms
In the process of the water cycle, moisture can accumulate in the atmosphere. This accumulation is what we see as a cloud. Interestingly, clouds can contain millions upon millions of water droplets and ice suspended in the air. As the process of evaporation and condensation continues, these droplets collide other moisture that is in the process of condensing as it rises. Also, the rising moisture may collide with ice or sleet that is in the process of falling to the earth or located in the lower portion of the cloud. The importance of these collisions is that electrons are knocked off of the rising moisture, thus creating acharge separation.
The newly knocked-off electrons gather at the lower portion of the cloud, giving it a negative charge. The rising moisture that has just lost an electron carries a positive charge to the top of the cloud. Beyond the collisions, freezing plays an important role. As the rising moisture encounters colder temperatures in the upper cloud regions and begins to freeze, the frozen portion becomes negatively charged and the unfrozen droplets become positively charged. At this point, rising air currents have the ability to remove the positively charged droplets from the ice and carry them to the top of the cloud. The remaining frozen portion would likely fall to the lower portion of the cloud or continue on to the ground. Combining the collisions with the freezing, we can begin to understand how a cloud may acquire the extreme charge separation that is required for a lightning strike.
When there is a charge separation in a cloud, there is also an electric field that is associated with the separation. Like the cloud, this field is negative in the lower region and positive in the upper region.
The strength or intensity of the electric field is directly related to the amount of charge buildup in the cloud. As the collisions and freezing continue to occur and the charges at the top and bottom of the cloud increase, the electric field becomes more and more intense -- so intense, in fact, that the electrons at the earth's surface are repelled deeper into the earth by the strong negative charge at the lower portion of the cloud. This repulsion of electrons causes the earth's surface to acquire a strong positive charge.
All that is needed now is a conductive path for the negative cloud bottom to contact the positive earth surface. The strong electric field, being somewhat self-sufficient, creates this path.
We'll look at the next stage of the lightning creation process, air ionization, next.
Air Ionization
The strong electric field causes the air around the cloud to "break down," allowing current to flow in an attempt to neutralize the charge separation. Simply stated, the air breakdown creates a path that short-circuits the cloud/eearth as if there were a long metal rod connecting the cloud to the earth. Here's how this breakdown works.
When the electric field becomes very strong (on the order of tens of thousands of volts per inch), conditions are ripe for the air to begin breaking down. The electric field causes the surrounding air to become separated into positive ions and electrons -- the air is ionized. Keep in mind that the ionization does not mean that there is more negative charge (electrons) or more positive charge (positive atomic nuclei / positive ions) than before. This ionization only means that the electrons and positive ions are farther apart than they were in their original molecular or atomic structure. Essentially, the electrons have been stripped from the molecular structure of the non-ionized air.
The importance of this separation/stripping is that the electrons are now free to move much more easily than they could before the separation. So this ionized air (also known as plasma) is much more conductive than the previous non-ionized air. Incidentally, the ability or freedom of the electrons to move is what makes any material a good conductor of electricity. Often times, metals are referred to as positive atomic nuclei surrounded by a fluid-like cloud of electrons. That makes many metals good conductors of electricity.
These electrons have excellent mobility, allowing for electrical current to flow. The ionization of air or gas creates plasma with conductive properties similar to that of metals. Plasma is the tool nature wields to neutralize charge separation in an electric field. Those readers who are familiar with the chemical reaction of fire will recall that oxidation plays an important role. Oxidation is the process by which an atom or molecule loses an electron when combined with oxygen. Simply put, the atom or molecule is changed from a lower positive potential to a higher positive potential. Interestingly enough, the process of ionization, which creates plasma, also occurs through the loss of electrons. By this comparison, we can view the ionization process as "burning a path" through the air for the lightning to follow, much like digging a tunnel through a mountain for a train to follow.
After the ionization process, the path between the cloud and the earth begins to form. Learn about step leaders, or paths of ionized air, next.
Lightning Myth #1 The tallest objects in a storm don't always get struck by lightning. It's true that taller objects are closer to the clouds, but as discussed previously, lightning can strike the ground at a close distance to a tall object. Taller objects may have a higher possibility of a strike, but where lightning is concerned, the strike path is not predictable.
Positive Streamers and Exploding Air
Next to occur is the actual meeting of a step leader and a streamer. As discussed earlier, the streamer that the step leader reaches is not necessarily the closest streamer to the cloud. It's very common for lightning to strike the ground even though there is a tree or a light pole or any other tall object in the vicinity. The fact that the step leader does not take the path of a straight line allows for this to occur.
After the step leader and the streamer meet, the ionized air (plasma) has completed its journey to the earth, leaving a conductive path from the cloud to the earth. With this path complete, current flows between the earth and the cloud. This discharge of current is nature's way of trying to neutralize the charge separation. The flash we see when this discharge occurs is not the strike -- it is the local effects of the strike.
Any time there is an electrical current, there is also heat associated with the current. Since there is an enormous amount of current in a lightning strike, there is also an enormous amount of heat. In fact, a bolt of lightning is hotter than the surface of the sun. This heat is the actual cause of the brilliant white-blue flash that we see.
When a leader and a streamer meet and the current flows (the strike), the air around the strike becomes extremely hot. So hot that it actually explodes because the heat causes the air to expand so rapidly. The explosion is soon followed by what we all know as thunder.
Thunder is the shockwave radiating away from the strike path. When the air heats up, it expands rapidly, creating a compression wave that propagates through the surrounding air. This compression wave manifests itself in the form of a sound wave. That does not mean that thunder is harmless. On the contrary, if you are close enough, you can feel the shockwave as it shakes the surroundings. Keep in mind that when a nuclear explosion occurs, typically the most destruction is caused by the energy of the rapidly moving shockwave. In fact, the shockwave that produces the thunder from a lightning strike can most certainly damage structures and people. This danger is more prominent when you are close to the strike, because the shockwave is stronger there and will dampen (decrease) with distance. Physics teaches us that sound travels much slower than light, so we see the flash before we hear the thunder. In air, sound travels roughly 1 mile every 4.5 seconds. Light travels at a blazing 186,000 miles (299,000 kilometers) per second.
No comments:
Post a Comment