Google Search

Custom Search

Thursday, October 1, 2009

How Satellites Work

How Satellites Work
How is a Satellite Launched into an Orbit?


All satellites today get into orbit by riding on a rocket or by riding in the cargo bay of the Space Shuttle. Several countries and businesses have rocket launch capabilities, and satellites as large as several tons make it safely into orbit on a regular basis.


For most satellite launches, the scheduled launch rocket is aimed straight up at first. This gets the rocket through the thickest part of the atmosphere most quickly and best minimizes fuel consumption.






After a rocket launches straight up, the rocket control mechanism uses the inertial guidance system to calculate necessary adjustments to the rocket's nozzles to

 tilt the rocket to the course described in the flight plan. In most cases, the flight plan calls for the rocket to head east because Earth rotates to the east, giving the launch vehicle a free boost. The strength of this boost depends on the rotational velocity of Earth at the launch location. The boost is greatest at the equator, where the distance around Earth is greatest and so rotation is fastest.


How big is the boost from an equatorial launch? To make a rough estimate, we can determine Earth's circumference by multiplying its diameter by pi (3.1416). The diameter of Earth is approximately 7,926 miles (12,753 km). Multiplying by pi yields a circumference of something like 24,900 miles (40,065 km). To travel around that circumference in 24 hours, a point on Earth's surface has to move at 1,038 mph (1,669 kph). A launch from Cape Canaveral, Florida, doesn't get as big a boost from Earth's rotational speed. The Kennedy Space Center's Launch Complex 39-A, one of its launch facilities, is located at 28 degrees 36 minutes 29.7014 seconds north latitude. The Earth's rotational speed there is about 894 mph (1,440 kph). The difference in Earth's surface speed between the equator and Kennedy Space Center, then, is about 144 mph (229 kph). (Note: The Earth is actually oblate -- fatter around the middle -- not a perfect sphere. For that reason, our estimate of Earth's circumference is a little small.)


Considering that rockets can go thousands of miles per hour, you may wonder why a difference of only 144 mph would even matter. The answer is that rockets, together with their fuel and their payloads, are very heavy. For example, the February 11, 2000 lift-off of the Space Shuttle Endeavor with the Shuttle Radar Topography Mission required launching a total weight of 4,520,415 pounds (2,050,447 kg). It takes a huge amount of energy to accelerate such a mass to 144 mph, and therefore a significant amount of fuel. Launching from the equator makes a real difference.


Once the rocket reaches extremely thin air, at about 120 miles (193 km) up, the rocket's navigational system fires small rockets, just enough to turn the launch vehicle into a horizontal position. The satellite is then released. At that point, rockets are fired again to ensure some separation between the launch vehicle and the satellite itself.




Orbital Velocity and Altitude

A rocket must accelerate to at least 25,039 mph (40,320 kph) to completely escape Earth's gravity and fly off into space (for more on escape velocity, visit and .
Earth's escape velocity is much greater than what's required to place an Earth satellite in orbit. With satellites, the object is not to escape Earth's gravity, but to balance it. Orbital velocity is the velocity needed to achieve balance between gravity's pull on the satellite and the inertia of the satellite's motion -- the satellite's tendency to keep going. This is approximately 17,000 mph (27,359 kph) at an altitude of 150 miles (242 km). Without gravity, the satellite's inertia would carry it off into space. Even with gravity, if the intended satellite goes too fast, it will eventually fly away. On the other hand, if the satellite goes too slowly, gravity will pull it back to Earth. At the correct orbital velocity, gravity exactly balances the satellite's inertia, pulling down toward Earth's center just enough to keep the path of the satellite curving like Earth's curved surface, rather than flying off in a straight line

The orbital velocity of the satellite depends on its altitude above Earth. The nearer Earth, the faster the required orbital velocity. At an altitude of 124 miles (200 kilometers), the required orbital velocity is just over 17,000 mph (about 27,400 kph). To maintain an orbit that is 22,223 miles (35,786 km) above Earth, the satellite must orbit at a speed of about 7,000 mph (11,300 kph). That orbital speed and distance permits the satellite to make one revolution in 24 hours. Since Earth also rotates once in 24 hours, a satellite at 22,223 miles altitude stays in a fixed position relative to a point on Earth's surface. Because the satellite stays right over the same spot all the time, this kind of orbit is called "geostationary."Geostationary orbits are ideal for weather satellites and communications satellites.


The moon has an altitude of about 240,000 miles (384,400 km), a velocity of about 2,300 mph (3,700 kph) and its orbit takes 27.322 days. (Note that the moon's orbital velocity is slower because it is farther from Earth than artificial satellites.)
In general, the higher the orbit, the longer the satellite can stay in orbit. At lower altitudes, a satellite runs into traces of Earth's atmosphere, which creates drag. The drag causes the orbit to decay until the satellite falls back into the atmosphere and burns up. At higher altitudes, where the vacuum of space is nearly complete, there is almost no drag and a satellite can stay in orbit for centuries (take the moon as an example).
Satellites usually start out in an orbit that is elliptical. The ground control station controls small onboard rocket motors to provide correction. The goal is to get the orbit as circular as possible. By firing a rocket when the orbit is at the apogee of its orbit (its most distant point from Earth), and applying thrust in the direction of the flight path, the perigee (lowest point from Earth) moves further out. The result is a more circular orbit.






What is a Satellite Launch Window?
A launch window is a particular period of time in which it will be easier to place the satellite in the orbit necessary to perform its intended function.


With the Space Shuttle, an extremely important factor in choosing the launch window is the need to bring down the astronauts safely if something goes wrong. The astronauts must be able to reach a safe landing area where rescue personnel can be standing by. For other types of flights, including interplanetary exploration, the launch window must permit the flight to take the most efficient course to its very distant destination. If weather is bad or a malfunction occurs during a launch window, the flight must be postponed until the next launch window appropriate for the flight. If a satellite were launched at the wrong time of the day in perfect weather, the satellite could end up in an orbit that would not pass over any of its intended users. Timing is everything!


What is Inside a Typical Satellite?

Satellites come in all shapes and sizes and play a variety of roles. For example:
  • Weather satellites help meteorologists predict the weather or see what's happening at the moment. Typical weather satellites include the TIROS, COSMOS and GOES satellites. The satellites generally contain cameras that can return photos of Earth's weather, either from fixed geostationary positions or from polar orbits.


  • Communications satellites allow telephone and data conversations to be relayed through the satellite. Typical communications satellites include Telstar and Intelsat. The most important feature of a communications satellite is the transponder -- a radio that receives a conversation at one frequency and then amplifies it and retransmits it back to Earth on another frequency. A satellite normally contains hundreds or thousands of transponders. Communications satellites are usually geosynchronous.


  • Broadcast satellites broadcast television signals from one point to another (similar to communications satellites).


  • Scientific satellites perform a variety of scientific missions. The Hubble Space Telescopeis the most famous scientific satellite, but there are many others looking at everything fromsun spots to gamma rays.


  • Navigational satellites help ships and planes navigate. The most famous are the GPS NAVSTAR satellites.


  • Rescue satellites respond to radio distress signals (read this page for details).



  • Earth observation satellites observe the planet for changes in everything from temperature to forestation to ice-sheet coverage. The most famous are the LANDSAT series.




  • Military satellites are up there, but much of the actual application information remains secret. Intelligence-gathering possibilities using high-tech electronic and sophisticated photographic-equipment reconnaissance are endless. Applications may include:

Despite the significant differences between all of these satellites, they have several things in common. For example:
  • All of them have a metal or composite frame and body, usually known as the bus. The bus holds everything together in space and provides enough strength to survive the launch.

  • All of them have a source of power and batteries for storage.
    Arrays of solar cells provide power to charge rechargeable batteries. Newer designs include the use of fuel cells. Power on most satellites is precious and very limited. Nuclear power has been used on space probes to other planets . Power systems are constantly monitored, and data on power and all other onboard systems is sent to Earth stations in the form of telemetry signals.


  • All of them have an onboard computer to control and monitor the different systems.
  • All of them have a radio system and antenna. At the very least, most satellites have a radio transmitter/receiver so that the ground-control crew can request status information from the satellite and monitor its health. Many satellites can be controlled in various ways from the ground to do anything from change the orbit to reprogram the computer system.

  • All of them have an attitude control system. The ACS keeps the satellite pointed in the right direction.
    The Hubble Space Telescope has a very elaborate control system so that the telescope can point at the same position in space for hours or days at a time (despite the fact that the telescope travels at 17,000 mph/27,359 kph!). The system contains gyroscopes, accelerometers, a reaction wheel stabilization system, thrusters and a set of sensors that watch guide stars to determine position.



1 comment:

  1. http://ia331411.us.archive.org/3/items/TvQuran.com__1/TvQuran.com__020.mp3

    Allah, CREATED THE UNIVERSE FROM NOTHING

    http://allah-created-the-universe.blogspot.com/


    What's The Purpose of life ?

    Here you will get the answer :

    http://www.islamtomorrow.com/purpose.htm

    or

    THE COLLAPSE OF THE THEORY OF EVOLUTION IN 20 QUESTIONS

    http://newaninvitationtothetruth.blogspot.com/

    OR

    Islam Guide: A Brief Illustrated Guide to Understanding Islam,
    Muslims, & the Quran

    http://www.islam-guide.com/

    or

    The quran miracles encyclopedia

    http://www.quran-m.com/

    or

    ((( Acquainted With Islam )))

    http://aslam-ahmd.blogspot.com/

    or

    The Religion of Islam

    http://www.islamreligion.com/

    or

    converts

    http://converts-ahmd.blogspot.com


    ((( Acquainted With Islam )))

    http://acquaintedwithislam.maktoobblog.com/


    http://www.islamhouse.com/

    ReplyDelete